Fuzzy Hybrid Control of Flexible Inverted Pendulum (FIP) System using Soft-computing Techniques

نویسندگان

  • Ashwani Kharola
  • Pravin Patil
چکیده

The cart-and-pendulum system is a highly nonlinear and under-actuated system that is a great source of interest and motivation for researchers all over the world. There are various configurations of the cart-and-pendulum system that finds wide applications in areas of manufacturing, robotics and control. This paper presents an offline mode control of the Flexible Inverted Pendulum (FIP), which is an extended version of conventional rigid-link pendulum system. The flexibility induced in the pole gives an additional degree of freedom to the system. The nonlinear differential equations were derived using Newton’s second law of motion. The study inculcates Fuzzy-based Adaptive Neuro Fuzzy Inference System (ANFIS) controllers for achieving the desired objective. The performance of controllers was measured and compared in a Matlab-Simulink environment. The study considered the effect of friction during motion of the proposed system. The results clearly showed that the ANFIS controller effectively mimics and optimises the behaviour of the Fuzzy controller. The number of Fuzzy rules were also significantly reduced using the ANFIS techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Analysis of Fuzzy Based Hybrid Anfis Controller for Stabilization and Control of Non- Linear Systems

This paper illustrates a Comparative study of highly non-linear, complex and multivariable Inverted Pendulum (IP) system on Cart using different soft computing techniques. Firstly, a Fuzzy logic controller was designed using triangular and trapezoidal shape Membership functions (MF's). The trapezoidal fuzzy controller shows better results in comparison to triangular fuzzy controller. Secondly, ...

متن کامل

A Pid Based Anfis & Fuzzy Control of Inverted Pendulum on Inclined Plane (ipip)

The objective of this study is to present an offline control of highly non-linear inverted pendulum system moving on a plane inclined at an angle of 10° from horizontal. The stabilisation was achieved using three different soft-computing control techniques i.e. Proportional-integral-derivative (PID), Fuzzy logic and Adaptive neuro fuzzy inference system (ANFIS). A Matlab-Simulink model of the p...

متن کامل

MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL

This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...

متن کامل

Inverted Pendulum Control Using Negative Data

   In the training phase of learning algorithms, it is always important to have a suitable training data set. The presence of outliers, noise data, and inappropriate data always affects the performance of existing algorithms. The active learning method (ALM) is one of the powerful tools in soft computing inspired by the computation of the human brain. The operation of this algorithm is complete...

متن کامل

The analysis of inverted pendulum control and its other applications

In this paper I am discussing the modeling and simulation study of basically two control strategies of an inverted pendulum system are presented. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Certain modern techniques are now available because of the development of artificial intelligence and soft computing methods. Fuzzy c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017